An Adaptive Parameter-Based Control Technique of Virtual Synchronous Generator for Smooth Transient Between Islanded and Grid-Connected Mode of Operation

نویسندگان

چکیده

This paper deals with the development of a control technique for voltage source converters (VSCs) as an interface between renewable energy sources (RESs) and power grids. The lack inertia in converter-based generators their unconventional dynamic behavior increase negative impacts on grid, unlike operation conventional synchronous (SGs). In this sense, proposed emulates SGs loop interfaced converter acting grid-forming generator. Thus, supportive functionalities enhancing electric grid stability (e.g., frequency oscillation damping) will be provided by virtual generator (VSG). main targets include emulation, damping, primary secondary regulation, regulation. contribution work over existing methods is that optimal values swing equation parameters are employed to ensure well-designed damping feature VSG-based which adapts grid-connected islanded operating modes, enabling smooth resynchronizing its plug-and-play capability requirement. structure evaluated through simulation MATLAB/Simulink.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

Adaptive Sliding Mode Control of Multi-DG, Multi-Bus Grid-Connected Microgrid

This paper proposes a new adaptive controller for the robust control of a grid-connected multi-DG microgrid (MG) with the main aim of output active power and reactive power regulation as well as busbar voltage regulation of DGs. In addition, this paper proposes a simple systematic method for the dynamic analysis including the shunt and series faults that are assumed to occur in the MG. The pres...

متن کامل

Power Management in Microgrid: Analysis in Grid Connected and Islanded Mode of Operation

Received Sep 4, 2017 Revised Oct 21, 2017 Accepted Nov 18, 2017 This paper presents an investigation about the impact of integrating renewable energy based generation sources on the existing distribution system in terms of load sharing. The study of load sharing among various distributed generators (DGs) and utility grid has been performed for two cases: (a) when equivalent source based DG is c...

متن کامل

Decentralized Control Strategy for Optimal Energy Management in Grid-Connected and Islanded DC Microgrids

This paper proposes a decentralized control technique to minimize the total operation cost of a DC microgrid in both grid-connected and islanded modes. In this study, a cost-based droop control scheme based on the hourly bids of all participant distributed generators (DGs) and the hourly energy price of the utility is presented. An economic power sharing technique among various types of DG unit...

متن کامل

A New Adaptive Load-Shedding and Restoration Strategy for Autonomous Operation of Microgrids: A Real-Time Study

Islanding operation is one of the main features of a MicroGrid (MG), which is realized regarding the presence of distributed energy resources (DERs). However, in order to deal with the control challenges, which an MG faces during island operation, particularly when the transition is associated with certain excessive load, an efficient control strategy is required. This paper introduces a Centra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3117617